Wayback Textmining

Martin Ratzmann

2026-02-16

Uberblick

crawl_wayback_site_to_files(domain, year, ...) lddt einen Wayback-Machine-Snapshot (Inter-
net Archive) der Homepage einer Domain fiir ein bestimmtes Jahr (moglichst nahe 01.07.) und crawlt
von dort aus interne Inhalte per Breadth-First Search (BFS) bis zu einer maximalen Tiefe.

Dabei werden:

o nur interne Links (optional inkl. Subdomains) verfolgt,

e nur ,,Content-URLs* akzeptiert (kein Login/Suche/Tag/Newsletter, keine Medien-/Download-
Dateien wie PDF/JPG/ZIP),

o URLs kanonisiert (Tracking-Parameter und Fragmente entfernt), um Duplikate und Schleifen zu
vermeiden,

« pro Seite bereinigter Text extrahiert (Navigation/Footer /Overlays/Cookie-Banner werden entfernt),

o FErgebnisse in zwei Dateien geschrieben:

— ID_YYYY.txt — reiner Text, Seite an Seite (getrennt durch Leerzeilen), ohne URL-Header
— ID_YYYY.csv — Request-Log (original_url, canonical_url, wayback_id_url, depth,
http_status, error)

Voraussetzungen

Benotigt wird eine lokal installierte Version von R, (getestet mit Version 4.4.3). Die erforderlichen Pakete
werden bei Bedarf per install_if_missing() automatisch installiert: httr2, jsonlite, xml2, rvest,
stringi, readr, tcltk.

Hinweis: In diesem Dokument werden Codebeispiele gezeigt. Damit sie laufen, muss der voll-
stéandige Funktionscode zuvor in der Session geladen sein (z. B. durch source ("wayback_crawler.R")
oder Copy & Paste).

Basisnutzung

Die Funktion erzeugt pro Abfrage zwei Dateien, die in einem lokalen Ordner gespeichert werden. Die Position
dieses Ordners wird zuvor festgelegt, z. B.:

out_dir <- "/Users/DEINNAME/Downloads/Mining/"

Der Aufruf crawl_wayback_site_to_files("www.example.com", 2020, id = "EX01", out_dir =
out_dir) erzeugt die Dateien EX01_2020.txt und EX01_2020.csv im Verzeichnis: /Users/DEINNAME/Downloads/Mining/.
Wenn id nicht gesetzt ist, wird stattdessen die Domain als Basisname verwendet.

Abfrage-Variationen

Eine umfangreichere Abfrage mit bis zu vier Ebenen der Homepage und bis zu 800 Seiten erfolgt mit der
Anweisung:

crawl_wayback_site_to_files("example.com", 2020, id="EX01", max_depth=4, max_pages=800,
out_dir=out_dir)

In der Regel schneller, aber weniger vollstdndig, ist die Abfrage ohne Unterseiten:
crawl_wayback_site_to_files("example.com", 2020, include_subdomains=FALSE)

Es kann auch festgelegt werden, dass die Abfrage abbricht, sobald eine angegebene Anzahl von extrahierten
Zeichen erreicht ist:

crawl_wayback_site_to_files("example.com", 2020, max_text_chars=100000)

Weil haufige Anfragen innerhalb kurzer Zeit zu Sperrungen oder Zuriickweisung fiithren, kénnen Pausen
zwischen einzelnen Anfragen eingerichtet werden.

crawl_wayback_site_to_files("example.com", 2020, polite_sleep=1.5, long_break_every=15,
long_break_range=c(10, 30))

Parameter von crawl_wayback_site_to_files()

crawl_wayback_site_to_files(domain, year,

id = NULL,

max_depth = 3,

max_pages = 250,
max_text_chars = 500000,
include_subdomains = TRUE,
timeout_s = 120,
out_dir = ".",
polite_sleep = 0.
long_break_every = 25,
long_break_range = c(5, 15)

(¢}

domain

Bedeutung: Die zu crawlende Domain (Startpunkt ist die Homepage).
Beispiele: "www.bosch.de", "bosch.de", "https://bosch.de/"

Hinweis: Tm Memento-Finder werden Varianten mit/ ohne www sowie http/https ausprobiert.

year

Bedeutung: Jahr, fiir das ein Wayback-Snapshot gesucht wird.

Wirkung: Es wird via CDX-API ein Snapshot im Zeitfenster YYYY-01-01 bis YYYY-12-31 gesucht, bevorzugt
nahe 01.07. (prefer_date = YYYY0701).

Typisch: Ein Jahr, in dem die Seite aktiv war.

id = NULL

Bedeutung: Kennung fiir die Ausgabedateien.

Wirkung: Wenn gesetzt (nicht leer), wird sie im Dateinamen genutzt: ID_YEAR.txt/csv Wenn nicht gesetzt,
wird domain als Ersatz verwendet.

Praktisch: Fur stabile, kurze Dateinamen bei vielen Laufen (z. B. Unternehmens-ID).
max_depth = 3
Bedeutung: Maximale Link-Tiefe ab Startseite (BFS-Ebenen).

Wirkung:

o Tiefe 0 = Startseite
e Tiefe 1 = Links direkt von Startseite

o Tiefe 2/3 entsprechend weiter

Trade-off: Hohere Tiefe — mehr Abdeckung, aber deutlich mehr Seiten/Requests.

max_pages = 250

Bedeutung: Maximale Anzahl erfolgreich/versucht verarbeiteter Seiten (Requests), unabhéngig von Tiefe.
Wirkung: Stoppt den Crawl, sobald pages_used diesen Wert erreicht.

Nutzen: Harte Obergrenze gegen ,explodierende“ Websites.

max_text_chars = 500000

Bedeutung: Obergrenze fiir die gesammelte Textmenge (Zeichen) im Output-Textfile.

Wirkung: Sobald das Limit tiberschritten wiirde:

o wird der letzte Text ggf. passend abgeschnitten,

o dann wird abgebrochen ([STOP] max_text_chars reached).

Setzen auf NULL/Inf: wiirde praktisch ,kein Textlimit bedeuten (im Code wird auf is.finite() gepriift).

include_subdomains = TRUE

Bedeutung: Ob Subdomains als ,intern® gelten.
Wirkung: TRUE: blog.example.com zdhlt als intern, wenn Seed-Host example.com ist
FALSE: nur exakt derselbe Host wird akzeptiert

Wichtig: Gerade bei grofien Websites liegen Inhalte oft auf Subdomains.

timeout_s = 120

Bedeutung: Netzwerk-Timeout pro Request (Sekunden).

Wirkung: Wird sowohl bei der CDX-Abfrage (Snapshot finden) als auch beim Seiten-Fetch genutzt
(req_timeout (timeout_s)).

Tipp: Bei langsamen Antworten/Retry-Ketten ggf. erhohen.
out_dir = "."

Bedeutung: Ausgabeordner fiir Text- und Logdatei.
Wirkung:

o "." = aktuelles Working Directory (getwd())

« sollte existieren; andernfalls schldgt das Schreiben fehl.

Tipp: Pfad explizit setzen, wenn du reproduzierbare Ablagen willst.

polite_sleep = 0.8

Bedeutung: ,Hofliche* Wartezeit zwischen Requests (Sekunden, mit Zufallsstreuung).

Wirkung: Nach jeder Seite:

e normal: runif (1, polite_sleep*0.7, polite_sleep*1.3)

o bei HTTP 429/503/504: stattdessen runif (1, 15, 45) (deutlich lingere Pause)

Ziel: Rate-Limiting vermeiden und das Archiv nicht iiberlasten.

long_break_every = 25

Bedeutung: Nach wie vielen Seiten zusétzlich eine lingere Pause gemacht wird.
Wirkung: Wenn pages_ used %% long_ break_every == 0, dann Long-Break.
long_break_range = c(5, 15)

Bedeutung: Intervall (Sekunden) fiir die ,Long Break“-Pause.
Wirkung: runif (1, long_break_range[1], long_break_range[2])

Tuning: Groflere Werte — weniger Risiko fiir 429/503, aber langsamer.

Output-Dateien

Die Textdatei ID_YYYY.txt enthédlt ausschliellich den extrahierten Text, Seite fiir Seite. Die Seiten sind
durch Leerzeilen getrennt und URLs werden nicht in den Text geschrieben. Wenn hier weiterhin uner-
wiinschte Textfragmente auftreten (z.B. Browser- oder Cookie-Hinweise, Banner von wayback machine,
javascript-Anweisungen), konnen solche Fragmente in zukiinftigen Abfragen gezielt herausgefiltert wer-
den, indem sie im Code in drop_patterns erginzt werden:

drop_patterns <- c(

"diese seite teilen",

"mehr Links",

"Close share layer",

"downloads",

"bitte benutzen sie einen anderen browser",
"browser, der nicht vollst[a&d]lndig unterst[ui]ltzt wird",
"darstellung und bedienbarkeit.*eingeschr[ad]nkt",
"zur optimalen nutzbarkeit empfehlen wir",
"download eines unterst[uii]ltzten browsers",
"\\b(internet explorer|chrome|firefox|safari)\\b",
"\\bmit dem aktuellen browser fortfahren\\b",
"“kontakt\\b",
"\\bdeutschland\\s*\\|\\s*xdeutsch\\b",
"“suchen\\b",

"region wechseln"

)
Die Logdatei ID_YYYY.csv enthélt pro Anfrage eine Zeile mit:

o die original_url (die gecrawlte URL)

o die canonical_url (nach Tracking-Bereinigung/Normalisierung)
o die wayback_id_url (konkrete Wayback-ID-URL mit Timestamp)
o die depth (BFS-Tiefe)

o der http_status (die Antwort der Abfrage)

o und error (Fehlermeldung, falls Fetch/Parse scheitert)

Funktionscode

install_if_missing <- function(pkgs) {
missing <- pkgs[!vapply(pkgs, requireNamespace, logical(l), quietly = TRUE)]
if (length(missing)) install.packages(missing)

}

install_if_missing(c("httr2", "jsonlite", "xml2", "rvest", "stringi","readr", "tcltk"))
library (httr2)

library(jsonlite)

library (xml2)

library(rvest)

library(stringi)

library(readr)

library(tcltk)

UA <- "R wayback text mining (polite; contact=you@example)"

Version ohne Ubersetzung

Funktion fiur den Wayback-Crawler (1 Domain + 1 Jaht):

— 1 Snapshot (nahe 01.07.) holen

- interne Links bis Tiefe 3 (BFS)

- nur "Content-URLs" (kein Search/Tag/Login, keine Medien/PDF etc.)

- URL-Kanonisierung (Tracking—Parameter raus) => keine Kreise

— doppelte Seiten nur einmal

- Textfile OHNE URL/Depth-Header (nur Text, Seite fur Seite getrennt)

- zwetites File: Request-Log mit original_url, canonical_url, wayback_id_url, depth,
status, error

Snapshot (memento) pro Jahr finden (Homepage ezakt)

get_wayback_memento_for_year <- function(domain, year,
timeout_s = 120,
max_tries = 6,
prefer_date = sprintf("7%d0701", year)) {

domain <- sub(" https?://", "", domain)
domain <- sub("/+$", "", domain)
base <- sub(" www\\.", "", domain)

variants <- unique(c(
paste0("https://", base, "/"),
paste0("http://", Dbase, "/"),
pasteO("https://wuw.", base, "/"),
pasteO("http://www.", base, "/")
)

from <- sprintf("/,d0101", year)
to <- sprintf(")d1231", year)
closest_ts <- pasteO(prefer_date, "000000")

fetch_one <- function(u, filter_200 = TRUE) {
q <- list(

url = u,
matchType = "exact",
from = from,

to = to,

output = "json",

fl = "timestamp,original",
closest = closest_ts,
limit = "1"

)
if (isTRUE(filter_200)) q$filter <- "statuscode:200"

message (sprintf (" [CDX] query url=ys filter200=Ys", u, filter_200))

r <- request("https://web.archive.org/cdx/search/cdx") [>
req_url_query(!!!q) [>
req_user_agent (UA) |>
req_timeout (timeout_s) [>
req_retry(max_tries = max_tries, backoff = function(i) min(2°(i - 1), 30)) |[>
req_perform()

st <- resp_status(r)
message (sprintf (" [CDX] http_status=/s", st))

body <- resp_body_string(r)

dat <- jsonlite::fromJSON(
body,
simplifyVector = TRUE,
simplifyDataFrame = TRUE,
simplifyMatrix = TRUE

Robust gegen "list of lists"

if (is.list(dat) && 'is.data.frame(dat) && is.null(dim(dat))) {
dat <- do.call(rbind, dat)

}

if (is.null(dim(dat)) || nrow(dat) <= 1) {
message (" [CDX] no rows")
return(NULL)

}

dat <- dat[-1, , drop = FALSE]
ts <- as.character(dat[1, 1])
orig <- as.character(dat[l, 2])

message (sprintf (" [CDX] found ts=)s original=ys", ts, orig))

list(

ts = ts,

original = orig,

wayback = pasteO("https://web.archive.org/web/", ts, "/", orig)
)

}

message (sprintf (" [CDX] searching memento for domain=Ys year=J)d (closest=Ys)",
domain, year, closest_ts))

for (u in variants) {
m <- tryCatch(fetch_one(u, TRUE), error = function(e) {
message (sprintf (" [CDX] error for %s: %s", u, conditionMessage(e)))
NULL
1)
if (!'is.null(m)) return(m)
}
for (u in variants) {
m <- tryCatch(fetch_one(u, FALSE), error = function(e) {
message (sprintf (" [CDX] error for %s: %s", u, conditionMessage(e)))

NULL
b
if (!is.null(m)) return(m)
}
message (" [CDX] no memento found for any variant")
NULL
}

URL canonicalization + Content filter

strip_fragment <- function(u) sub("#.*$", "", u)

host_of <- function(u) {
m <- stringi::stri_match_first_regex(u, "“https?://(["/]1+)")
if (is.na(m[1,2])) NA_character_ else tolower(m[1,2])

}

is_same_site <- function(u, seed_host, include_subdomains = TRUE) {
h <- host_of (u)
if (is.na(h) || is.na(seed_host)) return(FALSE)
if (h == seed_host) return(TRUE)
if (include_subdomains && endsWith(h, pasteO(".", seed_host))) return(TRUE)
FALSE

Entfernt typische Tracking-Parameter + sortiert (uery deterministisch
canonicalize_url <- function(u) {

u <- strip_fragment (u)

if (!is.character(u) || length(u) !'= 1L || is.na(u) || !nzchar(u)) return("")

if (!stringi::stri_detect_regex(u, "“https?://")) return(u) # nur absolute URLs

Query string roh aus URL ziehen (ohne httr2 query-build)
q_raw <- nn

if (grepl("\\?", u)) q_raw <- sub(""["?]*\\?", "", u)

scheme/host/path robust uber httr2 parsen (ohne spdter url_build zu nutzen)

p <- httr2::url_parse(u)

scheme <- tolower(p$scheme %||% "https")
host <- tolower(p$hostname %% "")
port <- p$port %l |% ""

path <- p$path %1% "/"

path <- stringi::stri_replace_all_regex(path, "/{2,}", "/")
if (nzchar(path) && path != "/") path <- sub("/+$", "", path)
if (!nzchar(path)) path <- "/"

Tracking—Parameter entfernen + deterministisch sortieren
q_out <- ""
if (nzchar(q_raw)) {
kv <- strsplit(q_raw, "&", fixed
kv <- kv[nzchar (kv)]

TRUE) [[1]]

if (length(kv)) {
keys <- sub("=.*§", "', kv)
has_eq <- grepl("=", kv, fixed = TRUE)
vals <- ifelse(has_eq, sub(" ["=]*=", "" ky), "")

drop_keys <- c(
"utm_source","utm_medium","utm_campaign","utm_term","utm_content",
"gclid","dclid","fbclid","yclid","msclkid",
"ref","referrer","cmp","campaign","src","source", "mkt_tok",
"session","sid","phpsessid","jsessionid"

keep <- !(tolower(keys) %inJ, drop_keys) & !stringi::stri_detect_regex(tolower (keys),

n AlltIIl_ n)
keys <- keys[keep]
vals <- vals[keep]

if (length(keys)) {
ord <- order(tolower(keys), vals)
keys <- keys[ord]; vals <- wvals[ord]
g_new <- pasteO(keys, ifelse(vals == "", "" 6 paste0("=", vals)))
q_out <- paste(q_new, collapse = "&")

}

}
+

Optional: scheme vereinheitlichen (reduziert Duplikate http/https)
scheme <- "https"

base <- pasteO(scheme, "://", host)

if (nzchar(port)) base <- pasteO(base, ":", port)
out <- pasteO(base, path)

if (nzchar(q_out)) out <- pasteO(out, "7", g_out)
out

}

"% 1% <- function(a, b) if (is.null(a) || length(a) == 0) b else a

Nur "Content-URLs": keine Suche/Tags/Login/Consent, keine Medien/Dounloads
is_content_url <- function(u) {
if (!nzchar(u)) return(FALSE)

low <- tolower(u)

harte Ausschlusse (Pfad/Keywords)
bad_path_patterns <- c(
"/search", "/suche", "/tag", "/tags", "/topic", "/thema", "/topics",
"/login", "/logout", "/signin", "/signup", "/register",
"/account", "/profil", "/profile", "/my-", "/user",
"/cookie", "/consent", "/privacy", "/datenschutz",
"/impressum", "/kontakt", "/contact",
"/newsletter", "/subscribe", "/abo",
"/sitemap", "/rss", "/feed"

if (any(vapply(bad_path_patterns, function(p) grepl(p, low, fixed = TRUE),
logical(1)))) return(FALSE)

Medien/Dateien ausschlieflen
if (stringi::stri_detect_regex(
low,
"\\. (pdf |doc|docx|xls|xlsx|ppt|pptx|zip|rar|7z|mp3]|
wav |mp4 |webm|mov|avi|png|jpe?glgif|svg) A\\7[$)",
opts_regex = stringi::stri_opts_regex(case_insensitive = TRUE)
)) return(FALSE)

TRUE
}

as_wayback_id_url <- function(original_url, ts) {
pasteO("https://web.archive.org/web/", ts, "id_/", original_url)

fix_missing spaces <- function(x) {
X <- stringi::stri_replace_all_regex(x, "([\\p{L1}]) ([\\p{Lu}1)", "$1 $2")
X <- stringi::stri_replace_all_regex(x, "([0-9]) ([\\p{L}1)", "$1 $2")
X <- stringi::stri_replace_all_regex(x, "([\\p{L}])([0-91)", "$1 $2")

X <- stringi::stri_replace_all_regex(x, "\\s+", " ")
trimws (x)

¥

Fetch + Parse: Text + interne Links

fetch_text_and_links <- function(original_url, ts,
timeout_s = 120,

seed_host = NULL,

include_subdomains = TRUE) {

10

original_url <- canonicalize_url(original_url)
fetch_url <- as_wayback_id_url(original_url, ts)

message (sprintf (" [FETCH] Ys", fetch_url))

resp <- request(fetch_url) [>

req_user_agent (UA) |>

req_timeout (timeout_s) |[>

req_retry(max_tries = 5, backoff = function(i) min(2°(i - 1), 30)) [>
req_perform()

status <- resp_status(resp)
message (sprintf (" [FETCH] status=)s", status))

doc <- xml2::read_html(resp_body_string(resp))

Entferner
kill_selectors <- paste(c(
"#wm-ipp", "#wm-ipp-base",
"script", "style", "noscript", "iframe",
"header", "nav", "footer", "aside",
"[role='navigation']", "[role='banner']", "[role='contentinfo']",
"#onetrust-banner-sdk", ".onetrust-pc-dark-filter", ".ot-sdk-container",
"[id*="'cookie']", "[class*='cookie']",
"[id*='consent']", "[class*='consent']",
"[class*='overlay']", "[class*='modal'l]", "[class*='popup']",
"[aria-modal='true']",
"[class*='search']", "[id*='search']",
"[class*='region']", "[id*='region']"
), collapse = ", ")
nodes <- rvest::html_elements(doc, kill_selectors)
if (length(nodes) > 0) xml2::xml_remove (nodes)

Hauptinhalt

main_selectors <- c("main", "article", "[role='main']", "#content", "#main", "#page",
"#app", ".content", ".main", ".page")

main_nodes <- rvest::html_elements(doc, paste(main_selectors, collapse = ", "))

pick_text_richest <- function(nodes) {
if (length(nodes) == 0) return(NULL)
txts <- vapply(nodes, function(n) paste(rvest::html_text(n), collapse = " "),
character (1))
nodes [[which.max(stringi::stri_length(txts))]]
¥

main_node <- pick_text_richest(main_nodes)

text_from_node <- function(node) {
tn <- xml2::xml_find_all(node, ".//text()")
if (length(tn) == 0) return("")

x <- paste(xml2::xml_text(tn), collapse = " ")
X <- stringi::stri_replace_all_regex(x, "\\s+", " ")
trimws (x)

11

raw <- if (!is.null(main_node)) {
text_from_node(main_node)
} else {
body <- rvest::html_elements(doc, "body")
if (length(body)) text_from_node(body[[1]]) else ""
}

Zetlenweise filtern

txt <- stringi::stri_replace_all_regex(raw, "\\r\\n/\\r", "\n")

txt <- stringi::stri_replace_all_regex(txt, "[\tl+", " ")

lines <- unlist(strsplit(txt, "\n", fixed = TRUE), use.names = FALSE)
lines <- trimws(lines)

lines <- lines[nzchar(lines)]

drop_patterns <- c(
"diese seite teilen",
"mehr Links",
"Close share layer",
"downloads",
"bitte benutzen sie einen anderen browser",
"browser, der nicht vollst[a&]lndig unterst[ui]tzt wird",
"darstellung und bedienbarkeit.*eingeschr[ad]nkt",
"zur optimalen nutzbarkeit empfehlen wir",
"download eines unterst[uii]tzten browsers",
"\\b(internet explorer|chrome|firefox|safari)\\b",
"\\bmit dem aktuellen browser fortfahren\\b",
"“kontakt\\b",
"\\bdeutschland\\s*\\ |\\s*deutsch\\b",
"“suchen\\b",
"region wechseln"

keep <- !vapply(lines, function(z) {
any(stringi::stri_detect_regex(
z, drop_patterns,
opts_regex = stringi::stri_opts_regex(case_insensitive = TRUE)
))
}, logical(1))

lines <- lines[keep]
lines <- lines[nchar(lines) >= 4]
lines <- vapply(lines, fix_missing_spaces, character(1l))

out_text <- paste(lines, collapse = "\n")
out_text <- stringi::stri_replace_all_regex(out_text, "\\n{3,}", "\n\n")
out_text <- trimws(out_text)

Links exztrahieren (absolut auf Original-URL, dann kanonisieren + filtern)
hrefs <- rvest::html_elements(doc, "a") |> rvest::html_attr("href")
hrefs <- hrefs[!is.na(hrefs)]

hrefs <- hrefs[!stringi::stri_detect_regex(hrefs, "“(mailto:|javascript:|tel:)")]

abs <- xml2::url_absolute(hrefs, original_url)

12

abs <- strip_fragment (abs)
abs <- unique(abs)

if (is.null(seed_host)) seed_host <- host_of (original_url)

intern + content-only + canonicalize

abs <- abs[vapply(abs, is_same_site, logical(l), seed_host = seed_host,

include_subdomains = include_subdomains)]
abs <- abs[vapply(abs, is_content_url, logical(1))]
abs <- vapply(abs, canonicalize_url, character(1))
abs <- unique(abs)

message (sprintf (" [PARSE] text_chars=/d links=Jd",
nchar (out_text, type = "chars"),
length(abs)))

list(

canonical_url = original_url,
text = out_text,

links = abs,

fetch_url = fetch_url,

status = status

crawl_wayback_site_to_files <- function(domain, year,
id = NULL,
max_depth = 3,
max_pages = 250,
max_text_chars = 500000,
include_subdomains = TRUE,
timeout_s = 120,
out_dir = ".",
polite_sleep = 0.8,
long_break_every
long_break_range

25,
c(5, 15)) {

m <- get_wayback_memento_for_year(domain, year, timeout_s = timeout_s)

if (is.null(m)) stop("Kein Wayback-Snapshot fir die Homepage in ", year,

domain)
ts <- m$ts
start_url <- canonicalize_url(m$original)
seed_host <- host_of(start_url)
BFS Queue (canonical URLs)
q_url <- c(start_url)

q_depth <- c(0OL)

visited <- new.env(parent = emptyenv()) # key = canonical_url

13

" gefunden:

B

pages_used <- OL

texts_out <- character()
total_chars <- OL
log_rows <- list()

while (length(q_url) > 0 && pages_used < max_pages) {
u <- q_url[[1]]
d <- q_depth[[1]]
g_url <- g url[-1]
q_depth <- q_depth[-1]

u <- canonicalize_url(u)

if (!'nzchar(u)) next

if (exists(u, envir = visited, inherits
assign(u, TRUE, envir = visited)

FALSE)) next

pages_used <- pages_used + 1L

res <- tryCatch(
fetch_text_and_links(u, ts, timeout_s = timeout_s, seed_host = seed_host,
include_subdomains = include_subdomains),
error = function(e) list(
canonical_url = u, text = "", links = character(),
fetch_url = as_wayback_id_url(u, ts),
status = NA_integer_, error = conditionMessage(e)

)

Text sammeln (OHNE URL/Depth im Textfile) - nur Trennlinte zwischen Seiten
if (!is.null(res$text) && nzchar(res$text)) {

sep R "\I].\Il"
add_chars <- nchar(res$text, type = "chars") + nchar(sep, type = "chars")

Wenn Limit erreicht/uberschritten:

letzten Text passend abschneiden und dann abbrechen

if (!is.null(max_text_chars) && is.finite(max_text_chars) &&
(total_chars + add_chars) > max_text_chars) {

remaining <- max_text_chars - total_chars
if (remaining > 0) {
Platz fiur Separator bericksichtigen
rem_for_text <- max(0, remaining - nchar(sep, type = '"chars"))
if (rem_for_text > 0) {
texts_out <- c(texts_out, substr(res$text, 1, rem_for_text), sep)

total_chars <- total_chars + rem_for_text + nchar(sep, type = '"chars")
}
}
message (sprintf (" [STOP] max_text_chars reached: %d", total_chars))
break
}

14

texts_out <- c(texts_out, res$text, sep)
total_chars <- total_chars + add_chars

}

Log (enthdlt URLs/Depth/Fetch)
log_rows[[length(log_rows) + 1L]] <- data.frame(
original _url = u,
canonical_url = res$canonical_url %/||% u,
wayback_id_url = res$fetch_url %||% as_wayback_id_url(u, ts),
depth = 4,
http_status = res$status %||% NA_integer_,
error = res$error %|1% "",
stringsAsFactors = FALSE

Links enqueue (nur neue canonical URLs)
if (d < max_depth && !is.null(res$links) && length(res$links) > 0) {
new_links <- vapply(res$links, canonicalize_url, character(1l))
new_links <- new_links[vapply(new_links, is_same_site, logical(1l),
seed_host = seed_host,
include_subdomains = include_subdomains)]
new_links <- new_links[vapply(new_links, is_content_url, logical(1l))]
new_links <- unique(new_links)

nur unvisited
new_links <- new_links[!vapply(new_links, function(x) exists(x, envir = visited,
inherits = FALSE), logical(1))]

if (length(new_links) > 0) {
q_url <- c(q_url, new_links)
g_depth <- c(q_depth, rep.int(d + 1L, length(new_links)))
}
}

Polite delays
if (!is.na(res$status) && res$status %in% c(429, 503, 504)) {
Sys.sleep(runif (1, 15, 45))
} else {
Sys.sleep(runif (1, polite_sleep * 0.7, polite_sleep * 1.3))
}
if (pages_used %7, long_break_every == 0) {
Sys.sleep(runif (1, long break_range[1], long_break_range[2]))
}

Dateinamen sollen ID enthalten (fallback: domain, falls keine ID ibergeben wurde)
id_used <- if (!is.null(id) && 'is.na(id) && nzchar(trimws(as.character(id)))) {
trimws (format(id, scientific = FALSE, trim = TRUE))
} else {
domain

safe_id <- gsub("["A-Za-z0-9._-]+", "_", id_used)

15

#text_file <- file.path(out_dir, sprintf("Js_Jkd_Js_texts.tzt", safe_id, year, ts))
#log_file <- file.path(out_dir, sprintf("/s_Jd_Js_requests.csv", safe_id, year, ts))

kurze Bezeichnung der Dateien: ID_year.txzt und ID_year.csv
text_file <- file.path(out_dir, sprintf("/s_%d.txt", safe_id, year))
log_file <- file.path(out_dir, sprintf("/s_Jd.csv", safe_id, year))

writeLines(texts_out, text_file, useBytes = TRUE)
log_df <- do.call(rbind, log_rows)
write.csv(log_df, log_file, row.names = FALSE, fileEncoding = "UTF-8")

message("Fertig.\nText: ", normalizePath(text_file, winslash = "/"),
"\nLog: ", normalizePath(log_file, winslash = "/"),
"\nPages used: ", pages_used, " (max_depth=", max_depth, ")")

invisible(list(text_file = text_file, log_file = log_file,
pages_used = pages_used, ts = ts, start_url = start_url))

Test fiir eine Seite

Die komplette Routine wird durch crawl _wayback__site_ to_ files () aufgerufen. Die erforderlichen Pa-
rameter fiir die Abfrage sind: * die URL der Webseite (domain =), * das relevante Jahr (year =), * die ID
fiir die spétere Zuordnung (id =).

als Abbruchkriterien kénnen die folgenden Parameter festegelegt werden:

o die max. Tiefe der untergeordneten Seiten (max_ depth = 3),
o die max. Anzahl der Seiten (max_pages = 250)
o die max. Menge des extrahierten Textes in Zeichen (max_ text_ chars = 500000)

Der Parameter include_subdomains = TRUE schliefit Unterseiten der Homepage in die Abfrage mit ein und
mit timeout_s = 120 wird festgelegt, dass die Abfrage abgebrochen wird, wenn nach 120 Sekunden keine
Antwort empfangen wurde.

Die resultierenden Datein werden im Verzeichnis out_dir = "." gespeichert und zwischen einzelnen Abfra-
gen wird eine Pause von polite_sleep = 0.8 eingelegt.

crawl_wayback_site_to_files <- function(domain, year,

id = NULL,

max_depth = 3,

max_pages = 250,
max_text_chars = 500000,
include_subdomains = TRUE,
timeout_s = 120,

out_dir = ".",

polite_sleep = 0.8,
long_break_every = 25,
long_break_range = c(5, 15))

16

Beispiel-Aufruf

out_dir = "~/Bookdown/Textmining/Wayback/Mining"
crawl_wayback_site_to_files("www.twitter.com", 2008, "ID666",

max_depth = 5, max_pages = 50,

Ausgabe in der Konsole

out_dir =

out_

dir)

[CDX] searching memento for domain=www.twitter.com year=2008 (closest=20080701000000)
[CDX] query url=https://twitter.com/ filter200=TRUE
[CDX] http_status=200

[CDX] found ts=20080101061456 original=http://twitter.com:
https://web.archive.org/web/20080101061456id_/http:

[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]

status=200
text_chars=458 links=6

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=458 links=6

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=461 links=6

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=564 links=5

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2284 links=4

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=176 links=7

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2106 links=11

https://web.archive.org/web/20080101061456id_/http:
https://web.archive.org/web/20080101061456id_/http:
https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=176 links=7

https://web.archive.org/web/20080101061456id_/http:
https://web.archive.org/web/20080101061456id_/http:

favorites

[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2106 links=10

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2654 links=14

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=1209 links=7

https://web.archive.org/web/20080101061456id_/http:

17

80/7

//twitter.

//twitter.

//tuitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.
//twitter.
//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

com:

com:

com:

com:

com:

com:

com:

com

com

com:
com:

com

com:

com

com:

80/

80/help/why

80/help/how

80/help/api

80/help/jobs

80/tos

80/celly

:80/T0S/friends
com:
:80/T0S

80/T0S/favorites

80/Celly/friends
80/Celly/

:80/Celly

80/alexknowshtml

:80/brian

80/Celly?page=2

[FETCH] https://web.archive.org/web/20080101061456id_/http:

friends
[FETCH] status=200
[PARSE] text_chars=153 links=5

[FETCH] https://web.archive.org/web/20080101061456id_/http:

favorites

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=2866 links=15

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=0 links=18

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=2278 links=10

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=2946 links=13

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=1868 links=12

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=2829 links=16

[FETCH] https://web.archive.org/web/20080101061456id_/http:

page=2
[FETCH] status=200
[PARSE] text_chars=2749 links=20

[FETCH] https://web.archive.org/web/20080101061456id_/http:

friends
[FETCH] status=200
[PARSE] text_chars=153 links=5

[FETCH] https://web.archive.org/web/20080101061456id_/http:

favorites
[FETCH] status=200
[PARSE] text_chars=114 1links=8

[FETCH] https://web.archive.org/web/20080101061456id_/http:

friends
[FETCH] status=200
[PARSE] text_chars=153 links=5

[FETCH] https://web.archive.org/web/20080101061456id_/http:

favorites

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=37 links=7

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=3013 links=9

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200
[PARSE] text_chars=2566 links=15

[FETCH] https://web.archive.org/web/20080101061456id_/http:

[FETCH] status=200

18

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

com:

com:

com:

com:

com:

com:

com:

com

com:

com:

com:

com:

com:

com:

com

com:

com

80/alexknowshtml/

80/alexknowshtml/

80/marusula

80/blankbaby

80/brianoberkirch

80/factoryjoe

80/davespeers

:80/joshualane

80/alexknowshtml?

80/brian/

80/brian/

80/marusula/

80/marusula/

80/megnificent

:80/sarahgilbert

80/ringmaster

:80/natmechanics

[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]

page=2

[FETCH]
[PARSE]
[FETCH]

text_chars=2877 links=17

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2351 1links=18

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=37 links=8

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2562 links=22

https://web.archive.org/web/20080101061456id_/http:

friends

[FETCH]

https://web.archive.org/web/20080101061456id_/http:

favorites

[FETCH]

41693
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]
[FETCH]
[PARSE]
[FETCH]

page=2

[FETCH]
[PARSE]
[FETCH]

https://web.archive.org/web/20080101061456id_/http:

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2593 links=11

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2267 links=10

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=0 links=18

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2812 links=13

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2233 links=18

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2352 links=11

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2723 links=17

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2198 links=14

https://web.archive.org/web/20080101061456id_/http:

status=200
text_chars=2371 links=19

https://web.archive.org/web/20080101061456id_/http:

brianoberkirch/friends

[FETCH]
[PARSE]
[FETCH]

status=200
text_chars=153 links=5

https://web.archive.org/web/20080101061456id_/http:

brianoberkirch/favorites

[FETCH]
[PARSE]

status=200
text_chars=2940 links=11

19

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

//twitter.

com:

com:

com:

com:

com:

com:

com:

com:

com

com:

com

com:

com

com:

com

com

com

80/swirlspice

80/stellargirl

80/marusula?

80/blankbaby/

80/blankbaby/

80/friends/index/

80/zorn

80/Fishbreakfast

:80/chockenberry

80/gruber

:80/jsnell

80/sweetums

:80/siracusa

80/ejacqui

:80/blankbaby?

:80/

:80/

Fertig.

Text: /Users/bwl6-mr/Bookdown/Textmining/Wayback/Mining/ID666_2008.txt
Log: /Users/bwl6-mr/Bookdown/Textmining/Wayback/Mining/ID666_2008.csv
Pages used: 50 (max_depth=5)

Ausgabe in der Text-Datei

What is Twitter? What? Why? How? Twitter is a service for friends, family, and co—workers to communicate and stay connected
through the exchange of quick, frequent answers to one simple question: What are you doing? Get Started-Join! QOriana from ccs...
wants you to join Twitter Once you join, you'll be connected to griana on Twitter. Please Sign In username password Remember me
Forgot password? Click here . Already using Twitter by SMS or IM? Click here.

Why use Twitter? What? Why? How? Why? Because even basic updates are meaningful to family members, friends, or colleagues—
especially when they’re timely. Eating soup? Research shows that moms want to know. Running late to a meeting? Your co-workers
might find that useful. Partying? Your friends may want to join you. Get Started—Join! Please Sign In username password Remember
me Forgot password? Click here . Already using Twitter by SMS or IM? Click here.

How does it work? What? Why? How? With Twitter, you can stay hyper—connected to your friends and always know what they’re doing.
Or, you can stop following them any time. You can even set quiet times on Twitter so you’re not interrupted. Twitter puts you in
control and becomes a modern antidote to information overload. Get Started—Join! Please Sign In username password Remember me
Forgot password? Click here . Already using Twitter by SMS or IM? Click here.

Twitter API The official Twitter API documentation is part of the Twitter Development Talk Google Group. Join the group, read the
docs, and create neat stuff like the apps, hacks, and mashups listed on the Twitter Fan Wiki ! Flash/Action Script Developers
Want to make a Twitter Flash app like Celly ? Here are recently updated versions of the Actionscript libraries for both
Actionscript 2 and Actionscript 3 . You might also be interested in the SWX Twitter API for Flash and Flash Lite. This is a
third-party service not affiliated with the offical Twitter API.

What are you doing? How about: “Working at Twitter!” We’re looking for bright minds to help us work on the ongoing challenge of
creating a compelling experience while accommodating rapid growth. Twitter is a new way for people to communicate, express
themselves, and connect with one another in a lightweight, ambient fashion. Our core technology is a large scale message routing
system with social functionality. Interested? Please email us at . Positions Available Senior Engineers Do you like to write code
that works elegantly and efficiently, then push it out to thousands of customers the same day it's finished? Do you enjoy
thinking carefully about system design and then sitting down to write a river of code which passes its own tests the first time
through? Do you want to help build a fast, reliable, complex messaging application that bridges the Internet and cell phones? If
so, we're looking people with these skills... BS or MS in Computer Science or equivalent experience. 5+ years of real-world
software development experience. Excellent and influential communication skills with engineers and non-engineers. Extensive
experience programming in both scripting and application-specific languages. Deep familiarity with Unix environments, HTTP, TCP/
IP. Experience with Jabber, Ruby on Rails, and My SQL a plus. Experience practicing agile development methodologies. Open source
community participation is highly respected. Strong interest in Twitter and developing a world class Internet utility. Operations
Engineers Focus on consistent availability and reliability (self and systems). Excellent and influential communication skills
(team, vendors, community). Experience with: Linux, 0S X, Solaris, HTTPD (Apache, lighttpd, nginx), mongrel, tomcat, My SQL,
pgsal, storage systems (NFS, NAS, SAN), load balancing systems (hardware, software, dns), automated system tools (cfengine).
Experience maintaining: large number of servers, multi-tiered environments, monitoring and notification tools. Experience
executing: well planned and tested solutions to complex problems, goal oriented workdays with multiple context changes and
interruption. Must have: excellent triage skills, mild manner, rockstar inside (ready to rise to any occasion), strong interest
in Twitter.

TOS Kub 3 months ago from txt With Others Previous hmmmmm ©2:36 AM August 28, 2007 from web my name is tos i want to test the
twitter too! ©2:34 AM August 28, 2007 from web RSS

20

Ausgabe in der Log-Datei

A B c

1 [original_url |canonical_url wayback_id_url

2 httpi//twitter.co http://twitter.com:80/ P archi p om:80/

3 http://twitter.com:80/help/why http:/twitter.com:80/help/why ar p: y
4 | http://twitter.com:80/help/how http://twitter.com:80/help/how archive. 101061456id

5 httpy/twitter.com:80/help/api http://twitter.com:80/help/api https://web.archive.org/web/20080101061456id_/http://twitter.com:80/help/api

6 httpy/twitter.com:80/help/jobs http://twitter.com:80/help/jobs https://web.archive. 101061456id_/http:/ help/jobs
7 httpi//twitter.com:80/tos http://twitter.com:80/tos https://web.archive. 1456id_/http:// tos

8 http://twitter.com:80/celly http:/twitter.com:80/celly p archi 1456id_/http:

9 http:/twitter.com:80/TOS/friends http://twitter.com:80/TOS/friends archive. 101061456id_/http: om:80/TOS/friends
10 http//twitter.com:80/TOS/favorites om:80/TO: archive. 101061456id_/http: Com:80/TO

11 http/twitter.com:80/T0S http:/twitter.com:80/TOS https://web.archive.org/web/20080101061456id_/http://twitter.com:80/T0S

12 http//twitter.com:80/Celly/friends http://twitter.com:80/Celly https://web.archive. i itter.com:80/Celly

13 http://twitter.com:80/Celly/favorites http: .com:80/C https://web.archive.org/ .com:80/Celly

14 http://twitter.com:80/Celly http://twitter.com:80/Celly P archi om:80/Celly

15 http//twitter.com:80/alexknowshtml i archive. 101061456id_/http:

16 | http//twitter.com:80/brian http:/twitter.com:80/brian https://web.archive.org/web/20080101061456id_/http://twitter.com:80/brian

17 http//twitter.com:80/Celly?page=2 i /twi m:80/Celly?pag archive. 101061456id_/http://twitter.com:80/Celly?pag
18 | http://twitter.com:80/alexknowshtmV/friends http: https://web.archive. 1456id_/http://

19 http://twitter.com:80/alexknowshtml/favorites i /twi P archi 1456id_/http:

20 http://twitter.com:80/marusula http:/twitter.com:80/marusula ar 1456id_/http:

21| httpi//twitter.com:80/blankbaby http://twitter.com:80/blankbaby archive. 101061456id

22 http://twitter.com:80/brianoberkirch P archive.org/web/20080101061456id_/http://twitter.com:80/brianoberkirch
23 httpy//twitter.com:80/factoryjoe http:/twitter.com:80/factoryjoe archive. i i factoryjoe
24 httpi//twitter.com:80/davespeers http://twitter. https://web.archive.

25 httpi//twitter.com:80/joshualane http://twitter.com:80/joshualane P archi

26 http://twitter.com:80/alexknowshtmi?page=2 i ?page=2 archive. 101061456id_/http: ?page=2
27 | httpy//twitter.com:80/brian/friends archive. 101061456id

28 http://twitter.com:80/brian/favorites P archive.org/web/20080101061456id_/http:/twitter.com:80/brian/favorites
29| httpi//twitter.com:80/marusula/friends http: https://web.archive. 1456id_/http:// marusula/fri
30 http://twitter.com:80/marusula/favorites http: https://web.archive.org/ 1456id_/http:/s

31 http:/twitter.com:80/megnificent p P archi 1456id_/http:

32 httpi//twitter.com:80/sarahgilbert archive. 101061456id_/

33 | httpi//twitter.com:80/ringmaster http://twitter.com:80/ringmaster https://web.archive.org/web/20080101061456id_/http://twitter.com:80/ringmaster
34 httpi//twitter.com:80/natmechanics p i archive. 1456id_/http:

35 httpy//twitter.com:80/swirlspice http://twitter.com:80/swirlspice https://web.archive. 1456id_/http://twi ilspi

36 http://twitter.com:80/stellargirl http:/twitter.com:80/stellargirl p archi 1456id_/http:/

37 | httpi//twitter.com:80/marusula?page=2 i archive. 101061456id_/http:

21

D

E

depth http_status error

0

A AN TN I P P P AT VI AT U CH IR

NA
NA

NA
NA

NA

NA

NA

200
200
200
200
200
200
200

200
200
200

200
200
200
200
200
200
200

HTTP 404 Not Found.
HTTP 404 Not Found.

HTTP 404 Not Found.
HTTP 404 Not Found.

HTTP 404 Not Found.

HTTP 404 Not Found.

HTTP 404 Not Found.

	Überblick
	Voraussetzungen
	Basisnutzung
	Abfrage-Variationen

	Parameter von crawl_wayback_site_to_files()
	domain
	year
	id = NULL
	max_depth = 3
	max_pages = 250
	max_text_chars = 500000
	include_subdomains = TRUE
	timeout_s = 120
	out_dir = "."
	polite_sleep = 0.8
	long_break_every = 25
	long_break_range = c(5, 15)

	Output-Dateien
	Funktionscode
	Test für eine Seite
	Beispiel-Aufruf
	Ausgabe in der Konsole
	Ausgabe in der Text-Datei
	Ausgabe in der Log-Datei

