
Wayback Textmining

Martin Ratzmann

2026-02-16

Überblick

crawl_wayback_site_to_files(domain, year, ...) lädt einen Wayback-Machine-Snapshot (Inter-
net Archive) der Homepage einer Domain für ein bestimmtes Jahr (möglichst nahe 01.07.) und crawlt
von dort aus interne Inhalte per Breadth-First Search (BFS) bis zu einer maximalen Tiefe.

Dabei werden:

• nur interne Links (optional inkl. Subdomains) verfolgt,
• nur „Content-URLs“ akzeptiert (kein Login/Suche/Tag/Newsletter, keine Medien-/Download-

Dateien wie PDF/JPG/ZIP),
• URLs kanonisiert (Tracking-Parameter und Fragmente entfernt), um Duplikate und Schleifen zu

vermeiden,
• pro Seite bereinigter Text extrahiert (Navigation/Footer/Overlays/Cookie-Banner werden entfernt),
• Ergebnisse in zwei Dateien geschrieben:

– ID_YYYY.txt → reiner Text, Seite an Seite (getrennt durch Leerzeilen), ohne URL-Header
– ID_YYYY.csv → Request-Log (original_url, canonical_url, wayback_id_url, depth,

http_status, error)

Voraussetzungen

Benötigt wird eine lokal installierte Version von R (getestet mit Version 4.4.3). Die erforderlichen Pakete
werden bei Bedarf per install_if_missing() automatisch installiert: httr2, jsonlite, xml2, rvest,
stringi, readr, tcltk.

Hinweis: In diesem Dokument werden Codebeispiele gezeigt. Damit sie laufen, muss der voll-
ständige Funktionscode zuvor in der Session geladen sein (z. B. durch source("wayback_crawler.R")
oder Copy & Paste).

Basisnutzung

Die Funktion erzeugt pro Abfrage zwei Dateien, die in einem lokalen Ordner gespeichert werden. Die Position
dieses Ordners wird zuvor festgelegt, z. B.:

out_dir <- "/Users/DEINNAME/Downloads/Mining/"

Der Aufruf crawl_wayback_site_to_files("www.example.com", 2020, id = "EX01", out_dir =
out_dir) erzeugt die Dateien EX01_2020.txt und EX01_2020.csv im Verzeichnis: /Users/DEINNAME/Downloads/Mining/.
Wenn id nicht gesetzt ist, wird stattdessen die Domain als Basisname verwendet.

1

Abfrage-Variationen

Eine umfangreichere Abfrage mit bis zu vier Ebenen der Homepage und bis zu 800 Seiten erfolgt mit der
Anweisung:

crawl_wayback_site_to_files("example.com", 2020, id="EX01", max_depth=4, max_pages=800,
out_dir=out_dir)

In der Regel schneller, aber weniger vollständig, ist die Abfrage ohne Unterseiten:

crawl_wayback_site_to_files("example.com", 2020, include_subdomains=FALSE)

Es kann auch festgelegt werden, dass die Abfrage abbricht, sobald eine angegebene Anzahl von extrahierten
Zeichen erreicht ist:

crawl_wayback_site_to_files("example.com", 2020, max_text_chars=100000)

Weil häufige Anfragen innerhalb kurzer Zeit zu Sperrungen oder Zurückweisung führen, können Pausen
zwischen einzelnen Anfragen eingerichtet werden.

crawl_wayback_site_to_files("example.com", 2020, polite_sleep=1.5, long_break_every=15,
long_break_range=c(10, 30))

Parameter von crawl_wayback_site_to_files()

crawl_wayback_site_to_files(domain, year,

id = NULL,
max_depth = 3,
max_pages = 250,
max_text_chars = 500000,
include_subdomains = TRUE,
timeout_s = 120,
out_dir = ".",
polite_sleep = 0.8,
long_break_every = 25,
long_break_range = c(5, 15)

)

domain

Bedeutung: Die zu crawlende Domain (Startpunkt ist die Homepage).

Beispiele: "www.bosch.de", "bosch.de", "https://bosch.de/"

Hinweis: Im Memento-Finder werden Varianten mit/ ohne www sowie http/https ausprobiert.

year

Bedeutung: Jahr, für das ein Wayback-Snapshot gesucht wird.

Wirkung: Es wird via CDX-API ein Snapshot im Zeitfenster YYYY-01-01 bis YYYY-12-31 gesucht, bevorzugt
nahe 01.07. (prefer_date = YYYY0701).

Typisch: Ein Jahr, in dem die Seite aktiv war.

2

id = NULL

Bedeutung: Kennung für die Ausgabedateien.

Wirkung: Wenn gesetzt (nicht leer), wird sie im Dateinamen genutzt: ID_YEAR.txt/csv Wenn nicht gesetzt,
wird domain als Ersatz verwendet.

Praktisch: Für stabile, kurze Dateinamen bei vielen Läufen (z. B. Unternehmens-ID).

max_depth = 3

Bedeutung: Maximale Link-Tiefe ab Startseite (BFS-Ebenen).

Wirkung:

• Tiefe 0 = Startseite

• Tiefe 1 = Links direkt von Startseite

• Tiefe 2/3 entsprechend weiter

Trade-off: Höhere Tiefe → mehr Abdeckung, aber deutlich mehr Seiten/Requests.

max_pages = 250

Bedeutung: Maximale Anzahl erfolgreich/versucht verarbeiteter Seiten (Requests), unabhängig von Tiefe.

Wirkung: Stoppt den Crawl, sobald pages_used diesen Wert erreicht.

Nutzen: Harte Obergrenze gegen „explodierende“ Websites.

max_text_chars = 500000

Bedeutung: Obergrenze für die gesammelte Textmenge (Zeichen) im Output-Textfile.

Wirkung: Sobald das Limit überschritten würde:

• wird der letzte Text ggf. passend abgeschnitten,

• dann wird abgebrochen ([STOP] max_text_chars reached).

Setzen auf NULL/Inf: würde praktisch „kein Textlimit“ bedeuten (im Code wird auf is.finite() geprüft).

include_subdomains = TRUE

Bedeutung: Ob Subdomains als „intern“ gelten.

Wirkung: TRUE: blog.example.com zählt als intern, wenn Seed-Host example.com ist

FALSE: nur exakt derselbe Host wird akzeptiert

Wichtig: Gerade bei großen Websites liegen Inhalte oft auf Subdomains.

3

timeout_s = 120

Bedeutung: Netzwerk-Timeout pro Request (Sekunden).

Wirkung: Wird sowohl bei der CDX-Abfrage (Snapshot finden) als auch beim Seiten-Fetch genutzt
(req_timeout(timeout_s)).

Tipp: Bei langsamen Antworten/Retry-Ketten ggf. erhöhen.

out_dir = "."

Bedeutung: Ausgabeordner für Text- und Logdatei.

Wirkung:

• "." = aktuelles Working Directory (getwd())

• sollte existieren; andernfalls schlägt das Schreiben fehl.

Tipp: Pfad explizit setzen, wenn du reproduzierbare Ablagen willst.

polite_sleep = 0.8

Bedeutung: „Höfliche“ Wartezeit zwischen Requests (Sekunden, mit Zufallsstreuung).

Wirkung: Nach jeder Seite:

• normal: runif(1, polite_sleep*0.7, polite_sleep*1.3)

• bei HTTP 429/503/504: stattdessen runif(1, 15, 45) (deutlich längere Pause)

Ziel: Rate-Limiting vermeiden und das Archiv nicht überlasten.

long_break_every = 25

Bedeutung: Nach wie vielen Seiten zusätzlich eine längere Pause gemacht wird.

Wirkung: Wenn pages_used %% long_break_every == 0, dann Long-Break.

long_break_range = c(5, 15)

Bedeutung: Intervall (Sekunden) für die „Long Break“-Pause.

Wirkung: runif(1, long_break_range[1], long_break_range[2])

Tuning: Größere Werte → weniger Risiko für 429/503, aber langsamer.

4

Output-Dateien

Die Textdatei ID_YYYY.txt enthält ausschließlich den extrahierten Text, Seite für Seite. Die Seiten sind
durch Leerzeilen getrennt und URLs werden nicht in den Text geschrieben. Wenn hier weiterhin uner-
wünschte Textfragmente auftreten (z.B. Browser- oder Cookie-Hinweise, Banner von wayback machine,
javascript-Anweisungen), können solche Fragmente in zukünftigen Abfragen gezielt herausgefiltert wer-
den, indem sie im Code in drop_patterns ergänzt werden:

drop_patterns <- c(

"diese seite teilen",
"mehr Links",
"Close share layer",
"downloads",
"bitte benutzen sie einen anderen browser",
"browser, der nicht vollst[aä]ndig unterst[uü]tzt wird",
"darstellung und bedienbarkeit.*eingeschr[aä]nkt",
"zur optimalen nutzbarkeit empfehlen wir",
"download eines unterst[uü]tzten browsers",
"\\b(internet explorer|chrome|firefox|safari)\\b",
"\\bmit dem aktuellen browser fortfahren\\b",
"^kontakt\\b",
"\\bdeutschland\\s*\\|\\s*deutsch\\b",
"^suchen\\b",
"region wechseln"

)

Die Logdatei ID_YYYY.csv enthält pro Anfrage eine Zeile mit:

• die original_url (die gecrawlte URL)
• die canonical_url (nach Tracking-Bereinigung/Normalisierung)
• die wayback_id_url (konkrete Wayback-ID-URL mit Timestamp)
• die depth (BFS-Tiefe)
• der http_status (die Antwort der Abfrage)
• und error (Fehlermeldung, falls Fetch/Parse scheitert)

5

Funktionscode

install_if_missing <- function(pkgs) {
missing <- pkgs[!vapply(pkgs, requireNamespace, logical(1), quietly = TRUE)]
if (length(missing)) install.packages(missing)

}

install_if_missing(c("httr2", "jsonlite", "xml2", "rvest", "stringi","readr", "tcltk"))
library(httr2)
library(jsonlite)
library(xml2)
library(rvest)
library(stringi)
library(readr)
library(tcltk)

UA <- "R wayback text mining (polite; contact=you@example)"

Version ohne Übersetzung

Funktion für den Wayback-Crawler (1 Domain + 1 Jahr):
- 1 Snapshot (nahe 01.07.) holen
- interne Links bis Tiefe 3 (BFS)
- nur "Content-URLs" (kein Search/Tag/Login, keine Medien/PDF etc.)
- URL-Kanonisierung (Tracking-Parameter raus) => keine Kreise
- doppelte Seiten nur einmal
- Textfile OHNE URL/Depth-Header (nur Text, Seite für Seite getrennt)
- zweites File: Request-Log mit original_url, canonical_url, wayback_id_url, depth,
status, error

Snapshot (memento) pro Jahr finden (Homepage exakt)

get_wayback_memento_for_year <- function(domain, year,

timeout_s = 120,
max_tries = 6,
prefer_date = sprintf("%d0701", year)) {

domain <- sub("ˆhttps?://", "", domain)
domain <- sub("/+$", "", domain)
base <- sub("ˆwww\\.", "", domain)

variants <- unique(c(
paste0("https://", base, "/"),
paste0("http://", base, "/"),
paste0("https://www.", base, "/"),
paste0("http://www.", base, "/")

))

from <- sprintf("%d0101", year)
to <- sprintf("%d1231", year)
closest_ts <- paste0(prefer_date, "000000")

fetch_one <- function(u, filter_200 = TRUE) {
q <- list(

6

url = u,
matchType = "exact",
from = from,
to = to,
output = "json",
fl = "timestamp,original",
closest = closest_ts,
limit = "1"

)
if (isTRUE(filter_200)) q$filter <- "statuscode:200"

message(sprintf("[CDX] query url=%s filter200=%s", u, filter_200))

r <- request("https://web.archive.org/cdx/search/cdx") |>
req_url_query(!!!q) |>
req_user_agent(UA) |>
req_timeout(timeout_s) |>
req_retry(max_tries = max_tries, backoff = function(i) min(2ˆ(i - 1), 30)) |>
req_perform()

st <- resp_status(r)
message(sprintf("[CDX] http_status=%s", st))

body <- resp_body_string(r)

dat <- jsonlite::fromJSON(
body,
simplifyVector = TRUE,
simplifyDataFrame = TRUE,
simplifyMatrix = TRUE

)

Robust gegen "list of lists"
if (is.list(dat) && !is.data.frame(dat) && is.null(dim(dat))) {

dat <- do.call(rbind, dat)
}

if (is.null(dim(dat)) || nrow(dat) <= 1) {
message("[CDX] no rows")
return(NULL)

}

dat <- dat[-1, , drop = FALSE]
ts <- as.character(dat[1, 1])
orig <- as.character(dat[1, 2])

message(sprintf("[CDX] found ts=%s original=%s", ts, orig))

list(
ts = ts,
original = orig,
wayback = paste0("https://web.archive.org/web/", ts, "/", orig)

)

7

}

message(sprintf("[CDX] searching memento for domain=%s year=%d (closest=%s)",
domain, year, closest_ts))

for (u in variants) {
m <- tryCatch(fetch_one(u, TRUE), error = function(e) {

message(sprintf("[CDX] error for %s: %s", u, conditionMessage(e)))
NULL

})
if (!is.null(m)) return(m)

}
for (u in variants) {

m <- tryCatch(fetch_one(u, FALSE), error = function(e) {
message(sprintf("[CDX] error for %s: %s", u, conditionMessage(e)))
NULL

})
if (!is.null(m)) return(m)

}

message("[CDX] no memento found for any variant")
NULL

}

URL canonicalization + Content filter

strip_fragment <- function(u) sub("#.*$", "", u)

host_of <- function(u) {
m <- stringi::stri_match_first_regex(u, "ˆhttps?://([ˆ/]+)")
if (is.na(m[1,2])) NA_character_ else tolower(m[1,2])

}

is_same_site <- function(u, seed_host, include_subdomains = TRUE) {
h <- host_of(u)
if (is.na(h) || is.na(seed_host)) return(FALSE)
if (h == seed_host) return(TRUE)
if (include_subdomains && endsWith(h, paste0(".", seed_host))) return(TRUE)
FALSE

}

Entfernt typische Tracking-Parameter + sortiert Query deterministisch
canonicalize_url <- function(u) {

u <- strip_fragment(u)
if (!is.character(u) || length(u) != 1L || is.na(u) || !nzchar(u)) return("")
if (!stringi::stri_detect_regex(u, "ˆhttps?://")) return(u) # nur absolute URLs

Query string roh aus URL ziehen (ohne httr2 query-build)
q_raw <- ""
if (grepl("\\?", u)) q_raw <- sub("ˆ[ˆ?]*\\?", "", u)

scheme/host/path robust über httr2 parsen (ohne später url_build zu nutzen)

8

p <- httr2::url_parse(u)
scheme <- tolower(p$scheme %||% "https")
host <- tolower(p$hostname %||% "")
port <- p$port %||% ""

path <- p$path %||% "/"
path <- stringi::stri_replace_all_regex(path, "/{2,}", "/")
if (nzchar(path) && path != "/") path <- sub("/+$", "", path)
if (!nzchar(path)) path <- "/"

Tracking-Parameter entfernen + deterministisch sortieren
q_out <- ""
if (nzchar(q_raw)) {

kv <- strsplit(q_raw, "&", fixed = TRUE)[[1]]
kv <- kv[nzchar(kv)]

if (length(kv)) {
keys <- sub("=.*$", "", kv)
has_eq <- grepl("=", kv, fixed = TRUE)
vals <- ifelse(has_eq, sub("ˆ[ˆ=]*=", "", kv), "")

drop_keys <- c(
"utm_source","utm_medium","utm_campaign","utm_term","utm_content",
"gclid","dclid","fbclid","yclid","msclkid",
"ref","referrer","cmp","campaign","src","source","mkt_tok",
"session","sid","phpsessid","jsessionid"

)

keep <- !(tolower(keys) %in% drop_keys) & !stringi::stri_detect_regex(tolower(keys),
"ˆutm_")

keys <- keys[keep]
vals <- vals[keep]

if (length(keys)) {
ord <- order(tolower(keys), vals)
keys <- keys[ord]; vals <- vals[ord]
q_new <- paste0(keys, ifelse(vals == "", "", paste0("=", vals)))
q_out <- paste(q_new, collapse = "&")

}
}

}

Optional: scheme vereinheitlichen (reduziert Duplikate http/https)
scheme <- "https"

base <- paste0(scheme, "://", host)
if (nzchar(port)) base <- paste0(base, ":", port)
out <- paste0(base, path)
if (nzchar(q_out)) out <- paste0(out, "?", q_out)
out

}

`%||%` <- function(a, b) if (is.null(a) || length(a) == 0) b else a

9

Nur "Content-URLs": keine Suche/Tags/Login/Consent, keine Medien/Downloads
is_content_url <- function(u) {

if (!nzchar(u)) return(FALSE)

low <- tolower(u)

harte Ausschlüsse (Pfad/Keywords)
bad_path_patterns <- c(

"/search", "/suche", "/tag", "/tags", "/topic", "/thema", "/topics",
"/login", "/logout", "/signin", "/signup", "/register",
"/account", "/profil", "/profile", "/my-", "/user",
"/cookie", "/consent", "/privacy", "/datenschutz",
"/impressum", "/kontakt", "/contact",
"/newsletter", "/subscribe", "/abo",
"/sitemap", "/rss", "/feed"

)

if (any(vapply(bad_path_patterns, function(p) grepl(p, low, fixed = TRUE),
logical(1)))) return(FALSE)

Medien/Dateien ausschließen
if (stringi::stri_detect_regex(

low,
"\\.(pdf|doc|docx|xls|xlsx|ppt|pptx|zip|rar|7z|mp3|

wav|mp4|webm|mov|avi|png|jpe?g|gif|svg)(\\?|$)",
opts_regex = stringi::stri_opts_regex(case_insensitive = TRUE)

)) return(FALSE)

TRUE
}

as_wayback_id_url <- function(original_url, ts) {
paste0("https://web.archive.org/web/", ts, "id_/", original_url)

}

Text extraction helpers

fix_missing_spaces <- function(x) {

x <- stringi::stri_replace_all_regex(x, "([\\p{Ll}])([\\p{Lu}])", "$1 $2")
x <- stringi::stri_replace_all_regex(x, "([0-9])([\\p{L}])", "$1 $2")
x <- stringi::stri_replace_all_regex(x, "([\\p{L}])([0-9])", "$1 $2")
x <- stringi::stri_replace_all_regex(x, "\\s+", " ")
trimws(x)

}

Fetch + Parse: Text + interne Links

fetch_text_and_links <- function(original_url, ts,
timeout_s = 120,
seed_host = NULL,
include_subdomains = TRUE) {

10

original_url <- canonicalize_url(original_url)
fetch_url <- as_wayback_id_url(original_url, ts)

message(sprintf("[FETCH] %s", fetch_url))

resp <- request(fetch_url) |>
req_user_agent(UA) |>
req_timeout(timeout_s) |>
req_retry(max_tries = 5, backoff = function(i) min(2ˆ(i - 1), 30)) |>
req_perform()

status <- resp_status(resp)
message(sprintf("[FETCH] status=%s", status))

doc <- xml2::read_html(resp_body_string(resp))

Entferner
kill_selectors <- paste(c(

"#wm-ipp", "#wm-ipp-base",
"script", "style", "noscript", "iframe",
"header", "nav", "footer", "aside",
"[role='navigation']", "[role='banner']", "[role='contentinfo']",
"#onetrust-banner-sdk", ".onetrust-pc-dark-filter", ".ot-sdk-container",
"[id*='cookie']", "[class*='cookie']",
"[id*='consent']", "[class*='consent']",
"[class*='overlay']", "[class*='modal']", "[class*='popup']",
"[aria-modal='true']",
"[class*='search']", "[id*='search']",
"[class*='region']", "[id*='region']"

), collapse = ", ")
nodes <- rvest::html_elements(doc, kill_selectors)
if (length(nodes) > 0) xml2::xml_remove(nodes)

Hauptinhalt
main_selectors <- c("main", "article", "[role='main']", "#content", "#main", "#page",

"#app", ".content", ".main", ".page")
main_nodes <- rvest::html_elements(doc, paste(main_selectors, collapse = ", "))

pick_text_richest <- function(nodes) {
if (length(nodes) == 0) return(NULL)
txts <- vapply(nodes, function(n) paste(rvest::html_text(n), collapse = " "),

character(1))
nodes[[which.max(stringi::stri_length(txts))]]

}
main_node <- pick_text_richest(main_nodes)

text_from_node <- function(node) {
tn <- xml2::xml_find_all(node, ".//text()")
if (length(tn) == 0) return("")
x <- paste(xml2::xml_text(tn), collapse = " ")
x <- stringi::stri_replace_all_regex(x, "\\s+", " ")
trimws(x)

}

11

raw <- if (!is.null(main_node)) {
text_from_node(main_node)

} else {
body <- rvest::html_elements(doc, "body")
if (length(body)) text_from_node(body[[1]]) else ""

}

Zeilenweise filtern
txt <- stringi::stri_replace_all_regex(raw, "\\r\\n|\\r", "\n")
txt <- stringi::stri_replace_all_regex(txt, "[\t]+", " ")
lines <- unlist(strsplit(txt, "\n", fixed = TRUE), use.names = FALSE)
lines <- trimws(lines)
lines <- lines[nzchar(lines)]

drop_patterns <- c(
"diese seite teilen",
"mehr Links",
"Close share layer",
"downloads",
"bitte benutzen sie einen anderen browser",
"browser, der nicht vollst[aä]ndig unterst[uü]tzt wird",
"darstellung und bedienbarkeit.*eingeschr[aä]nkt",
"zur optimalen nutzbarkeit empfehlen wir",
"download eines unterst[uü]tzten browsers",
"\\b(internet explorer|chrome|firefox|safari)\\b",
"\\bmit dem aktuellen browser fortfahren\\b",
"ˆkontakt\\b",
"\\bdeutschland\\s*\\|\\s*deutsch\\b",
"ˆsuchen\\b",
"region wechseln"

)

keep <- !vapply(lines, function(z) {
any(stringi::stri_detect_regex(

z, drop_patterns,
opts_regex = stringi::stri_opts_regex(case_insensitive = TRUE)

))
}, logical(1))

lines <- lines[keep]
lines <- lines[nchar(lines) >= 4]
lines <- vapply(lines, fix_missing_spaces, character(1))

out_text <- paste(lines, collapse = "\n")
out_text <- stringi::stri_replace_all_regex(out_text, "\\n{3,}", "\n\n")
out_text <- trimws(out_text)

Links extrahieren (absolut auf Original-URL, dann kanonisieren + filtern)
hrefs <- rvest::html_elements(doc, "a") |> rvest::html_attr("href")
hrefs <- hrefs[!is.na(hrefs)]
hrefs <- hrefs[!stringi::stri_detect_regex(hrefs, "ˆ(mailto:|javascript:|tel:)")]

abs <- xml2::url_absolute(hrefs, original_url)

12

abs <- strip_fragment(abs)
abs <- unique(abs)

if (is.null(seed_host)) seed_host <- host_of(original_url)

intern + content-only + canonicalize
abs <- abs[vapply(abs, is_same_site, logical(1), seed_host = seed_host,

include_subdomains = include_subdomains)]
abs <- abs[vapply(abs, is_content_url, logical(1))]
abs <- vapply(abs, canonicalize_url, character(1))
abs <- unique(abs)

message(sprintf("[PARSE] text_chars=%d links=%d",
nchar(out_text, type = "chars"),
length(abs)))

list(
canonical_url = original_url,
text = out_text,
links = abs,
fetch_url = fetch_url,
status = status
)
}

Crawl BFS + Dateien

crawl_wayback_site_to_files <- function(domain, year,

id = NULL,
max_depth = 3,
max_pages = 250,
max_text_chars = 500000,
include_subdomains = TRUE,
timeout_s = 120,
out_dir = ".",
polite_sleep = 0.8,
long_break_every = 25,
long_break_range = c(5, 15)) {

m <- get_wayback_memento_for_year(domain, year, timeout_s = timeout_s)
if (is.null(m)) stop("Kein Wayback-Snapshot für die Homepage in ", year, " gefunden: ",

domain)

ts <- m$ts
start_url <- canonicalize_url(m$original)
seed_host <- host_of(start_url)

BFS Queue (canonical URLs)
q_url <- c(start_url)
q_depth <- c(0L)

visited <- new.env(parent = emptyenv()) # key = canonical_url

13

pages_used <- 0L

texts_out <- character()
total_chars <- 0L
log_rows <- list()

while (length(q_url) > 0 && pages_used < max_pages) {
u <- q_url[[1]]
d <- q_depth[[1]]
q_url <- q_url[-1]
q_depth <- q_depth[-1]

u <- canonicalize_url(u)
if (!nzchar(u)) next
if (exists(u, envir = visited, inherits = FALSE)) next
assign(u, TRUE, envir = visited)

pages_used <- pages_used + 1L

res <- tryCatch(
fetch_text_and_links(u, ts, timeout_s = timeout_s, seed_host = seed_host,

include_subdomains = include_subdomains),
error = function(e) list(

canonical_url = u, text = "", links = character(),
fetch_url = as_wayback_id_url(u, ts),
status = NA_integer_, error = conditionMessage(e)

)
)

Text sammeln (OHNE URL/Depth im Textfile) – nur Trennlinie zwischen Seiten
if (!is.null(res$text) && nzchar(res$text)) {

sep <- "\n\n"
add_chars <- nchar(res$text, type = "chars") + nchar(sep, type = "chars")

Wenn Limit erreicht/überschritten:
letzten Text passend abschneiden und dann abbrechen
if (!is.null(max_text_chars) && is.finite(max_text_chars) &&

(total_chars + add_chars) > max_text_chars) {

remaining <- max_text_chars - total_chars
if (remaining > 0) {

Platz für Separator berücksichtigen
rem_for_text <- max(0, remaining - nchar(sep, type = "chars"))
if (rem_for_text > 0) {

texts_out <- c(texts_out, substr(res$text, 1, rem_for_text), sep)
total_chars <- total_chars + rem_for_text + nchar(sep, type = "chars")

}
}

message(sprintf("[STOP] max_text_chars reached: %d", total_chars))
break

}

14

texts_out <- c(texts_out, res$text, sep)
total_chars <- total_chars + add_chars

}

Log (enthält URLs/Depth/Fetch)
log_rows[[length(log_rows) + 1L]] <- data.frame(

original_url = u,
canonical_url = res$canonical_url %||% u,
wayback_id_url = res$fetch_url %||% as_wayback_id_url(u, ts),
depth = d,
http_status = res$status %||% NA_integer_,
error = res$error %||% "",
stringsAsFactors = FALSE

)

Links enqueue (nur neue canonical URLs)
if (d < max_depth && !is.null(res$links) && length(res$links) > 0) {

new_links <- vapply(res$links, canonicalize_url, character(1))
new_links <- new_links[vapply(new_links, is_same_site, logical(1),

seed_host = seed_host,
include_subdomains = include_subdomains)]

new_links <- new_links[vapply(new_links, is_content_url, logical(1))]
new_links <- unique(new_links)

nur unvisited
new_links <- new_links[!vapply(new_links, function(x) exists(x, envir = visited,

inherits = FALSE), logical(1))]

if (length(new_links) > 0) {
q_url <- c(q_url, new_links)
q_depth <- c(q_depth, rep.int(d + 1L, length(new_links)))

}
}

Polite delays
if (!is.na(res$status) && res$status %in% c(429, 503, 504)) {

Sys.sleep(runif(1, 15, 45))
} else {

Sys.sleep(runif(1, polite_sleep * 0.7, polite_sleep * 1.3))
}
if (pages_used %% long_break_every == 0) {

Sys.sleep(runif(1, long_break_range[1], long_break_range[2]))
}

}

Dateinamen sollen ID enthalten (fallback: domain, falls keine ID übergeben wurde)
id_used <- if (!is.null(id) && !is.na(id) && nzchar(trimws(as.character(id)))) {

trimws(format(id, scientific = FALSE, trim = TRUE))
} else {

domain
}
safe_id <- gsub("[ˆA-Za-z0-9._-]+", "_", id_used)

15

#text_file <- file.path(out_dir, sprintf("%s_%d_%s_texts.txt", safe_id, year, ts))
#log_file <- file.path(out_dir, sprintf("%s_%d_%s_requests.csv", safe_id, year, ts))

kurze Bezeichnung der Dateien: ID_year.txt und ID_year.csv
text_file <- file.path(out_dir, sprintf("%s_%d.txt", safe_id, year))
log_file <- file.path(out_dir, sprintf("%s_%d.csv", safe_id, year))

writeLines(texts_out, text_file, useBytes = TRUE)
log_df <- do.call(rbind, log_rows)
write.csv(log_df, log_file, row.names = FALSE, fileEncoding = "UTF-8")

message("Fertig.\nText: ", normalizePath(text_file, winslash = "/"),
"\nLog: ", normalizePath(log_file, winslash = "/"),
"\nPages used: ", pages_used, " (max_depth=", max_depth, ")")

invisible(list(text_file = text_file, log_file = log_file,
pages_used = pages_used, ts = ts, start_url = start_url))

}

Test für eine Seite

Die komplette Routine wird durch crawl_wayback_site_to_files () aufgerufen. Die erforderlichen Pa-
rameter für die Abfrage sind: * die URL der Webseite (domain =), * das relevante Jahr (year =), * die ID
für die spätere Zuordnung (id =).

als Abbruchkriterien können die folgenden Parameter festegelegt werden:

• die max. Tiefe der untergeordneten Seiten (max_depth = 3),
• die max. Anzahl der Seiten (max_pages = 250)
• die max. Menge des extrahierten Textes in Zeichen (max_text_chars = 500000)

Der Parameter include_subdomains = TRUE schließt Unterseiten der Homepage in die Abfrage mit ein und
mit timeout_s = 120 wird festgelegt, dass die Abfrage abgebrochen wird, wenn nach 120 Sekunden keine
Antwort empfangen wurde.

Die resultierenden Datein werden im Verzeichnis out_dir = "." gespeichert und zwischen einzelnen Abfra-
gen wird eine Pause von polite_sleep = 0.8 eingelegt.

crawl_wayback_site_to_files <- function(domain, year,

id = NULL,

max_depth = 3,

max_pages = 250,

max_text_chars = 500000,

include_subdomains = TRUE,

timeout_s = 120,

out_dir = ".",

polite_sleep = 0.8,

long_break_every = 25,

long_break_range = c(5, 15))

16

Beispiel-Aufruf

out_dir = "~/Bookdown/Textmining/Wayback/Mining"
crawl_wayback_site_to_files("www.twitter.com", 2008, "ID666",

max_depth = 5, max_pages = 50, out_dir = out_dir)

Ausgabe in der Konsole

[CDX] searching memento for domain=www.twitter.com year=2008 (closest=20080701000000)
[CDX] query url=https://twitter.com/ filter200=TRUE
[CDX] http_status=200
[CDX] found ts=20080101061456 original=http://twitter.com:80/?
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/
[FETCH] status=200
[PARSE] text_chars=458 links=6
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/help/why
[FETCH] status=200
[PARSE] text_chars=458 links=6
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/help/how
[FETCH] status=200
[PARSE] text_chars=461 links=6
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/help/api
[FETCH] status=200
[PARSE] text_chars=564 links=5
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/help/jobs
[FETCH] status=200
[PARSE] text_chars=2284 links=4
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/tos
[FETCH] status=200
[PARSE] text_chars=176 links=7
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/celly
[FETCH] status=200
[PARSE] text_chars=2106 links=11
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/TOS/friends
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/TOS/favorites
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/TOS
[FETCH] status=200
[PARSE] text_chars=176 links=7
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/Celly/friends
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/Celly/

favorites
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/Celly
[FETCH] status=200
[PARSE] text_chars=2106 links=10
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/alexknowshtml
[FETCH] status=200
[PARSE] text_chars=2654 links=14
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/brian
[FETCH] status=200
[PARSE] text_chars=1209 links=7
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/Celly?page=2

17

[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/alexknowshtml/
friends

[FETCH] status=200
[PARSE] text_chars=153 links=5
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/alexknowshtml/

favorites
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/marusula
[FETCH] status=200
[PARSE] text_chars=2866 links=15
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/blankbaby
[FETCH] status=200
[PARSE] text_chars=0 links=18
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/brianoberkirch
[FETCH] status=200
[PARSE] text_chars=2278 links=10
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/factoryjoe
[FETCH] status=200
[PARSE] text_chars=2946 links=13
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/davespeers
[FETCH] status=200
[PARSE] text_chars=1868 links=12
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/joshualane
[FETCH] status=200
[PARSE] text_chars=2829 links=16
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/alexknowshtml?

page=2
[FETCH] status=200
[PARSE] text_chars=2749 links=20
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/brian/

friends
[FETCH] status=200
[PARSE] text_chars=153 links=5
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/brian/

favorites
[FETCH] status=200
[PARSE] text_chars=114 links=8
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/marusula/

friends
[FETCH] status=200
[PARSE] text_chars=153 links=5
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/marusula/

favorites
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/megnificent
[FETCH] status=200
[PARSE] text_chars=37 links=7
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/sarahgilbert
[FETCH] status=200
[PARSE] text_chars=3013 links=9
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/ringmaster
[FETCH] status=200
[PARSE] text_chars=2566 links=15
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/natmechanics
[FETCH] status=200

18

[PARSE] text_chars=2877 links=17
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/swirlspice
[FETCH] status=200
[PARSE] text_chars=2351 links=18
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/stellargirl
[FETCH] status=200
[PARSE] text_chars=37 links=8
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/marusula?

page=2
[FETCH] status=200
[PARSE] text_chars=2562 links=22
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/blankbaby/

friends
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/blankbaby/

favorites
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/friends/index/

41693
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/zorn
[FETCH] status=200
[PARSE] text_chars=2593 links=11
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/Fishbreakfast
[FETCH] status=200
[PARSE] text_chars=2267 links=10
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/chockenberry
[FETCH] status=200
[PARSE] text_chars=0 links=18
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/gruber
[FETCH] status=200
[PARSE] text_chars=2812 links=13
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/jsnell
[FETCH] status=200
[PARSE] text_chars=2233 links=18
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/sweetums
[FETCH] status=200
[PARSE] text_chars=2352 links=11
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/siracusa
[FETCH] status=200
[PARSE] text_chars=2723 links=17
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/ejacqui
[FETCH] status=200
[PARSE] text_chars=2198 links=14
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/blankbaby?

page=2
[FETCH] status=200
[PARSE] text_chars=2371 links=19
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/

brianoberkirch/friends
[FETCH] status=200
[PARSE] text_chars=153 links=5
[FETCH] https://web.archive.org/web/20080101061456id_/http://twitter.com:80/

brianoberkirch/favorites
[FETCH] status=200
[PARSE] text_chars=2940 links=11

19

Fertig.
Text: /Users/bwl6-mr/Bookdown/Textmining/Wayback/Mining/ID666_2008.txt
Log: /Users/bwl6-mr/Bookdown/Textmining/Wayback/Mining/ID666_2008.csv
Pages used: 50 (max_depth=5)

Ausgabe in der Text-Datei

20

Ausgabe in der Log-Datei

21

	Überblick
	Voraussetzungen
	Basisnutzung
	Abfrage-Variationen

	Parameter von crawl_wayback_site_to_files()
	domain
	year
	id = NULL
	max_depth = 3
	max_pages = 250
	max_text_chars = 500000
	include_subdomains = TRUE
	timeout_s = 120
	out_dir = "."
	polite_sleep = 0.8
	long_break_every = 25
	long_break_range = c(5, 15)

	Output-Dateien
	Funktionscode
	Test für eine Seite
	Beispiel-Aufruf
	Ausgabe in der Konsole
	Ausgabe in der Text-Datei
	Ausgabe in der Log-Datei

